1,592 research outputs found

    Childhood maltreatment and the medical morbidity in bipolar disorder: a case-control study.

    Get PDF
    BACKGROUND: Childhood maltreatment (abuse and neglect) can have long-term deleterious consequences, including increased risk for medical and psychiatric illnesses, such as bipolar disorder in adulthood. Emerging evidence suggests that a history of childhood maltreatment is linked to the comorbidity between medical illnesses and mood disorders. However, existing studies on bipolar disorder have not yet explored the specific influence of child neglect and have not included comparisons with individuals without mood disorders (controls). This study aimed to extend the existing literature by examining the differential influence of child abuse and child neglect on medical morbidity in a sample of bipolar cases and controls. METHODS: The study included 72 participants with bipolar disorder and 354 psychiatrically healthy controls (average age of both groups was 48 years), who completed the Childhood Trauma Questionnaire, and were interviewed regarding various medical disorders. RESULTS: A history of any type of childhood maltreatment was significantly associated with a diagnosis of any medical illness (adjusted OR = 6.28, 95% confidence intervals 1.70-23.12, p = 0.006) and an increased number of medical illnesses (adjusted OR = 3.77, 95% confidence intervals 1.34-10.57, p = 0.012) among adults with bipolar disorder. Exposure to child abuse was more strongly associated with medical disorders than child neglect. No association between childhood maltreatment and medical morbidity was detected among controls. CONCLUSIONS: To summarise, individuals with bipolar disorder who reported experiencing maltreatment during childhood, especially abuse, were at increased risk of suffering from medical illnesses and warrant greater clinical attention.The bipolar case–control genetic association study was funded by an unrestricted grant from GlaxoSmithKline Research and Development. Funding for the depression case–control study was provided by the UK Medical Research Council (MRC; G0701420). The BADGE study was supported by an Interdisciplinary Ph.D. studentship from the UK Economic Social Research Council (ESRC) and MRC to Dr. Hosang. Prof. Uher is supported by the Canada Research Chairs program (http://www.chairs-chaires.gc.ca/him) and Dr. Fisher is supported by an MQ Fellows Award (MQ14F40). The sources of funding had no involvement in the study design, data collection or decision to submit for publication

    The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia

    Get PDF
    Molecular genetic analysis offers opportunities to advance our understanding of the nosological relationship between psychiatric diagnostic categories in general, and the mood and psychotic disorders in particular. Strong evidence (P=7.0 × 10−7) of association at the polymorphism rs1006737 (within CACNA1C, the gene encoding the α-1C subunit of the L-type voltage-gated calcium channel) with the risk of bipolar disorder (BD) has recently been reported in a meta-analysis of three genome-wide association studies of BD, including our BD sample (N=1868) studied within the Wellcome Trust Case Control Consortium. Here, we have used our UK case samples of recurrent major depression (N=1196) and schizophrenia (N=479) and UK non-psychiatric comparison groups (N=15316) to examine the spectrum of phenotypic effect of the bipolar risk allele at rs1006737. We found that the risk allele conferred increased risk for schizophrenia (P=0.034) and recurrent major depression (P=0.013) with similar effect sizes to those previously observed in BD (allelic odds ratio ∼1.15). Our findings are evidence of some degree of overlap in the biological underpinnings of susceptibility to mental illness across the clinical spectrum of mood and psychotic disorders, and show that at least some loci can have a relatively general effect on susceptibility to diagnostic categories, as currently defined. Our findings will contribute to a better understanding of the pathogenesis of major psychiatric illness, and such knowledge should be useful in providing an etiological rationale for shaping psychiatric nosology, which is currently reliant entirely on descriptive clinical data

    Structure of HrcQ(B)-C, a conserved component of the bacterial type III secretion systems

    Get PDF
    Type III secretion systems enable plant and animal bacterial pathogens to deliver virulence proteins into the cytosol of eukaryotic host cells, causing a broad spectrum of diseases including bacteremia, septicemia, typhoid fever, and bubonic plague in mammals, and localized lesions, systemic wilting, and blights in plants. In addition, type III secretion systems are also required for biogenesis of the bacterial flagellum. The HrcQ(B) protein, a component of the secretion apparatus of Pseudomonas syringae with homologues in all type III systems, has a variable N-terminal and a conserved C-terminal domain (HrcQ(B)-C). Here, we report the crystal structure of HrcQ(B)-C and show that this domain retains the ability of the full-length protein to interact with other type III components. A 3D analysis of sequence conservation patterns reveals two clusters of residues potentially involved in protein–protein interactions. Based on the analogies between HrcQ(B) and its flagellum homologues, we propose that HrcQ(B)-C participates in the formation of a C-ring-like assembly

    Grain-size controls on the morphology and internal geometry of river-dominated deltas

    Get PDF
    Predictions of a delta's morphology, facies, and stratigraphy are typically derived from its relative wave, tide, and river energies, with sediment type playing a lesser role. Here we test the hypothesis that, all other factors being equal, the topset of a relatively noncohesive, sandy delta will have more active distributaries, a less rugose shoreline morphology, less topographic variation in its topset, and less variability in foreset dip directions than a highly cohesive, muddy delta. As a consequence its stratigraphy will have greater clinoform dip magnitudes and clinoform concavity, a greater percentage of channel facies, and less rugose sand bodies than a highly cohesive, muddy delta. Nine self-formed deltas having different sediment grain sizes and critical shear stresses required for re-entrainment of mud are simulated using Deflt3D, a 2D flow and sediment-transport model. Model results indicate that sand-dominated deltas are more fan-shaped while mud-dominated deltas are more birdsfoot in planform, because the sand-dominated deltas have more active distributaries and a smaller variance of topset elevations, and thereby experience a more equitable distribution of sediment to their perimeters. This results in a larger proportion of channel facies in sand-dominated deltas, and more uniformly distributed clinoform dip directions, steeper dips, and greater clinoform concavity. These conclusions are consistent with data collected from the Goose River Delta, a coarse-grained fan delta prograding into Goose Bay, Labrador, Canada. A reinterpretation of the Kf-1 parasequence set of the Cretaceous Last Chance Delta, a unit of the Ferron Sandstone near Emery, Utah, USA uses Ferron grain-size data, clinoform-dip data, clinoform concavity, and variance of dip directions to hindcast the delta's planform. The Kf-1 Last Chance Delta is predicted to have been more like a fan delta in planform than a birdsfoot delta

    A dynamic network approach for the study of human phenotypes

    Get PDF
    The use of networks to integrate different genetic, proteomic, and metabolic datasets has been proposed as a viable path toward elucidating the origins of specific diseases. Here we introduce a new phenotypic database summarizing correlations obtained from the disease history of more than 30 million patients in a Phenotypic Disease Network (PDN). We present evidence that the structure of the PDN is relevant to the understanding of illness progression by showing that (1) patients develop diseases close in the network to those they already have; (2) the progression of disease along the links of the network is different for patients of different genders and ethnicities; (3) patients diagnosed with diseases which are more highly connected in the PDN tend to die sooner than those affected by less connected diseases; and (4) diseases that tend to be preceded by others in the PDN tend to be more connected than diseases that precede other illnesses, and are associated with higher degrees of mortality. Our findings show that disease progression can be represented and studied using network methods, offering the potential to enhance our understanding of the origin and evolution of human diseases. The dataset introduced here, released concurrently with this publication, represents the largest relational phenotypic resource publicly available to the research community.Comment: 28 pages (double space), 6 figure

    FunFOLDQA: a quality assessment tool for protein-ligand binding site residue predictions

    Get PDF
    The estimation of prediction quality is important because without quality measures, it is difficult to determine the usefulness of a prediction. Currently, methods for ligand binding site residue predictions are assessed in the function prediction category of the biennial Critical Assessment of Techniques for Protein Structure Prediction (CASP) experiment, utilizing the Matthews Correlation Coefficient (MCC) and Binding-site Distance Test (BDT) metrics. However, the assessment of ligand binding site predictions using such metrics requires the availability of solved structures with bound ligands. Thus, we have developed a ligand binding site quality assessment tool, FunFOLDQA, which utilizes protein feature analysis to predict ligand binding site quality prior to the experimental solution of the protein structures and their ligand interactions. The FunFOLDQA feature scores were combined using: simple linear combinations, multiple linear regression and a neural network. The neural network produced significantly better results for correlations to both the MCC and BDT scores, according to Kendall’s τ, Spearman’s ρ and Pearson’s r correlation coefficients, when tested on both the CASP8 and CASP9 datasets. The neural network also produced the largest Area Under the Curve score (AUC) when Receiver Operator Characteristic (ROC) analysis was undertaken for the CASP8 dataset. Furthermore, the FunFOLDQA algorithm incorporating the neural network, is shown to add value to FunFOLD, when both methods are employed in combination. This results in a statistically significant improvement over all of the best server methods, the FunFOLD method (6.43%), and one of the top manual groups (FN293) tested on the CASP8 dataset. The FunFOLDQA method was also found to be competitive with the top server methods when tested on the CASP9 dataset. To the best of our knowledge, FunFOLDQA is the first attempt to develop a method that can be used to assess ligand binding site prediction quality, in the absence of experimental data

    Are genetic risk factors for psychosis also associated with dimension-specific psychotic experiences in adolescence?

    Get PDF
    Psychosis has been hypothesised to be a continuously distributed quantitative phenotype and disorders such as schizophrenia and bipolar disorder represent its extreme manifestations. Evidence suggests that common genetic variants play an important role in liability to both schizophrenia and bipolar disorder. Here we tested the hypothesis that these common variants would also influence psychotic experiences measured dimensionally in adolescents in the general population. Our aim was to test whether schizophrenia and bipolar disorder polygenic risk scores (PRS), as well as specific single nucleotide polymorphisms (SNPs) previously identified as risk variants for schizophrenia, were associated with adolescent dimension-specific psychotic experiences. Self-reported Paranoia, Hallucinations, Cognitive Disorganisation, Grandiosity, Anhedonia, and Parent-rated Negative Symptoms, as measured by the Specific Psychotic Experiences Questionnaire (SPEQ), were assessed in a community sample of 2,152 16-year-olds. Polygenic risk scores were calculated using estimates of the log of odds ratios from the Psychiatric Genomics Consortium GWAS stage-1 mega-analysis of schizophrenia and bipolar disorder. The polygenic risk analyses yielded no significant associations between schizophrenia and bipolar disorder PRS and the SPEQ measures. The analyses on the 28 individual SNPs previously associated with schizophrenia found that two SNPs in TCF4 returned a significant association with the SPEQ Paranoia dimension, rs17512836 (p-value=2.57x10-4) and rs9960767 (p-value=6.23x10-4). Replication in an independent sample of 16-year-olds (N=3,427) assessed using the Psychotic-Like Symptoms Questionnaire (PLIKS-Q), a composite measure of multiple positive psychotic experiences, failed to yield significant results. Future research with PRS derived from larger samples, as well as larger adolescent validation samples, would improve the predictive power to test these hypotheses further. The challenges of relating adult clinical diagnostic constructs such as schizophrenia to adolescent psychotic experiences at a genetic level are discussed

    Diagnostic stability among chronic patients with functional psychoses: an epidemiological and clinical study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diagnostic stability and illness course of chronic non-organic psychoses are complex phenomena and only few risk factors or predictors are known that can be used reliably. This study investigates the diagnostic stability during the entire course of illness in patients with non-organic psychoses and attempts to identify non-psychopathological risk factors or predictors.</p> <p>Method</p> <p>100 patients with functional psychosis were initially characterised using the Operational Criteria Checklist for Psychotic Illness and Affective Illness (OPCRIT), medical records and health registers. To study the stability of diagnoses (i.e. shifts per time), we used registry data to define four measures of diagnostic variation that were subsequently examined in relation to four possible measures of time (i.e. observation periods or hospitalisation events). Afterwards, we identified putative co-variables and predictors of the best measures of diagnostic stability.</p> <p>Results</p> <p>All four measures of diagnostic variation are very strongly associated with numbers-of-hospitalisations and less so with duration-of-illness, duration-of-hospitalisation and with year-of-first-admission. The four measures of diagnostic variation corrected for numbers-of-hospitalisations were therefore used to study the diagnostic stability. Conventional predictors of illness course – e.g. age-of-onset and premorbid-functioning – are not significantly associated with stability. Only somatic-comorbidity is significantly associated with two measures of stability, while family-history-of-psychiatric-illness and global-assessment-of-functioning (GAF) scale score show a trend. However, the traditional variables age-of-first-admission, civil-status, first-diagnosis-being-schizophrenia and somatic-comorbidity are able to explain two-fifth of the variation in numbers-of-hospitalisations.</p> <p>Conclusion</p> <p>Diagnostic stability is closely linked with the contact between patient and the healthcare system. This could very likely be due to fluctuation of disease manifestation over time or presence of co-morbid psychiatric illness in combination with rigid diagnostic criteria that are unable to capture the multiple psychopathologies of the functional psychoses that results in differential diagnoses and therefore diagnostic instability. Not surprisingly, somatic-comorbidity was found to be a predictor of diagnostic variation thereby being a non-psychiatric confounder.</p

    Psychometric precision in phenotype definition is a useful step in molecular genetic investigation of psychiatric disorders

    Get PDF
    Affective disorders are highly heritable, but few genetic risk variants have been consistently replicated in molecular genetic association studies. The common method of defining psychiatric phenotypes in molecular genetic research is either a summation of symptom scores or binary threshold score representing the risk of diagnosis. Psychometric latent variable methods can improve the precision of psychiatric phenotypes, especially when the data structure is not straightforward. Using data from the British 1946 birth cohort, we compared summary scores with psychometric modeling based on the General Health Questionnaire (GHQ-28) scale for affective symptoms in an association analysis of 27 candidate genes (249 single-nucleotide polymorphisms (SNPs)). The psychometric method utilized a bi-factor model that partitioned the phenotype variances into five orthogonal latent variable factors, in accordance with the multidimensional data structure of the GHQ-28 involving somatic, social, anxiety and depression domains. Results showed that, compared with the summation approach, the affective symptoms defined by the bi-factor psychometric model had a higher number of associated SNPs of larger effect sizes. These results suggest that psychometrically defined mental health phenotypes can reflect the dimensions of complex phenotypes better than summation scores, and therefore offer a useful approach in genetic association investigations

    The selectivity, voltage-dependence and acid sensitivity of the tandem pore potassium channel TASK-1 : contributions of the pore domains

    Get PDF
    We have investigated the contribution to ionic selectivity of residues in the selectivity filter and pore helices of the P1 and P2 domains in the acid sensitive potassium channel TASK-1. We used site directed mutagenesis and electrophysiological studies, assisted by structural models built through computational methods. We have measured selectivity in channels expressed in Xenopus oocytes, using voltage clamp to measure shifts in reversal potential and current amplitudes when Rb+ or Na+ replaced extracellular K+. Both P1 and P2 contribute to selectivity, and most mutations, including mutation of residues in the triplets GYG and GFG in P1 and P2, made channels nonselective. We interpret the effects of these—and of other mutations—in terms of the way the pore is likely to be stabilised structurally. We show also that residues in the outer pore mouth contribute to selectivity in TASK-1. Mutations resulting in loss of selectivity (e.g. I94S, G95A) were associated with slowing of the response of channels to depolarisation. More important physiologically, pH sensitivity is also lost or altered by such mutations. Mutations that retained selectivity (e.g. I94L, I94V) also retained their response to acidification. It is likely that responses both to voltage and pH changes involve gating at the selectivity filter
    corecore